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Abstract

Three-dimensional free vibration of a circular cylindrical shell in contact with an elastic medium will be studied. The

response of the elastic medium is formulated by the Winkler/Pasternak model. The layerwise theory, in conjunction with a

three-dimensional form of Hamilton’s principle, is used to obtain the transversely discretized equations of motion, and the

related boundary conditions. The differential quadrature method is employed to discretize the resulting equations in

the axial direction and for the solution procedure. To validate the formulation, the results are compared with the available

exact solutions and also with ANSYS finite elements solutions. By examining the results for thick circular shells under

various boundary conditions and on different elastic foundations, the influence of such parameters, and in particular, those

due to elastic foundations are studied.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Cylindrical shells are widely used as structural components for pressure vessels, storage tanks, pipes, and
many other engineering applications. Many of the shell studies are based on classical shell theories which are
based on Kirchhoff–Love’s hypothesis (see, for example, Refs. [1–6]). Neglecting transverse shear
deformations in classical shell theories might be adequate for thin shells, for which the radius-to-thickness
and thickness/length ratios are small. However, modifications to such theories are necessary for shells of
recognizable thickness/length ratios. In this respect, two-dimensional shell theories have been modified
(to become known as higher-order shell theories) to include the transverse shear deformation [7–11]. Such
modified theories are again suitable for moderately thick shells. In the case of thick circular cylindrical shells,
accurate prediction of natural frequencies can be obtained by using the three-dimensional (3D) elasticity
theory in an exact manner. Although a great amount of research has been done on moderately thick or thick
shells based on 3D elasticity solutions, due to the complexity of the governing equations, efficient numerical
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

Az
nr, Bz

nr the first- and second-order differential
quadrature weighting coefficients

B vector of boundary degrees of freedom
D vector of domain degrees of freedom
E Young’s modulus
Fim

r ;F
im
y ;F

im
z generalized forces along the r-, y-

and z-directions
h thickness of cylinder
I imaginary number (

ffiffiffiffiffiffiffi
�1
p

)
kr; kg radial and shear stiffnesses
Kr;Kg the non-dimensional elastic foundation

coefficients (Kr ¼ Ehkr=½R
2ð1� n2Þ� and

Kg ¼ Ehkg=ð1� n2Þ)
L length of cylinder
m circumferential wavenumber
M mass matrix
n wavenumber in the z-direction
Nm number of mathematical layers
Nnpl number of nodes per layer in the thick-

ness direction
Nr total number of nodes through the

thickness of the shell
Nz number of descritized point in the z-

direction
r radial coordinate variable

R mean radius of cylinder
Ri;Ro internal and external radius of cylinder
Sdd;Sbb;Sdb;Sbd stiffness matrices
T kinetic energy
u displacement component along the radial

direction
Ūj radial displacement vector due to cir-

cumferential wavenumber j

v displacement component along the tan-
gential direction

V total linear elastic strain energy
V̄j tangential displacement vector due to

circumferential wavenumber j

w displacement component along the axial
direction

W̄j axial displacement vector due to circum-
ferential wavenumber j

dij Kronecker delta
�rr; �yy; �zz; �ry; �rz; �yz strain tensor components
n Poisson’s ratio
y tangential coordinate variable
r mass per unit volume
ciðrÞ global interpolation function in r-direc-

tion
o natural frequency
ð:Þ0 d/dr( � )
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techniques should still be introduced to solve the resulting equations of thick cylindrical shells with general
boundary conditions. It should be mentioned that also research works on classical and first-order shear
deformation shell theories are continued using different numerical methods [12,13] and approximate analytical
solutions [14].

A comprehensive survey of the early works dealing with 3D vibration analysis of cylinders can be found in
the review paper by Soldatos [15]. The research works on the vibration analysis of isotropic and composite
cylindrical shells based on 3D elasticity theory have been continued [16–21]. In such research works, finite
element method, Ritz method, and the series solutions are the most popular numerical solution procedures.
Due to the numerous applications of shell structures in industry, however, the search continues for additional
and more efficient methods.

Cylindrical shells are usually laid on or placed in a soil medium as an elastic foundation, thus there is a great
interest in vibration analysis of the shells on elastic foundations. Yang et al. [22] has investigated the behavior
of whole buried pipelines subjected to sinusoidal seismic waves by the finite element method. Paliwal, Pandey,
Kanagasabapathy and Gupta [23,24] have investigated the free vibration of whole buried cylindrical shells
with simply supported ends in contact with Winkler and Pasternak foundations using direct solution to the
governing classical shell theory equations of motion. Gunawan et al. [25] examined the free vibrations of
cylindrical shells partially buried in elastic foundations based on the finite element method. The shells are
discretized into cylindrical finite elements and the distribution of the foundation in the circumferential
direction is defined by the expansion of Fourier series.

Due to the intrinsic complexity of the problem based on the 3D elasticity, exact solutions are not available
for cylindrical shells with general boundary conditions. Hence, in this study, based on the 3D theory of
elasticity, a mixed layerwise-differential quadrature method for a free vibration analysis of circular cylindrical
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shell resting on an elastic foundation with general boundary conditions is developed. The effects of radial and
shear stiffness of an elastic foundation on frequency parameters will be studied. The layerwise theory is a
refined theory that can suitably account for the thickness effects with minimum computational cost [26].
Unlike the equivalent single layer theories, the layerwise theory assumes separate displacement field
expansions within each subdivision. Moreover, the layerwise theory provides a kinematically correct
representation of the strain field in discrete layers [26]. The differential quadrature method is a relatively new
numerical technique in structural analysis. A review of the early developments in the differential quadrature
method can be found in papers by Bert and Malik [27,28]. The method has been widely used for static and free
vibration analysis of beams and plates [27–36] and shells [37]. In the application of the differential quadrature
method for such problems, it was concluded that highly accurate results with less computations can be
obtained.
2. The basic formulations

The geometric configuration of a homogeneous, isotropic circular cylindrical shell is shown in Fig. 1.
The coordinate system is located at the end plane of the cylindrical shell where the z-axis is directed
along the longitudinal axis. Mean radius of the shell is denoted by R, uniform thickness by h and
cylinder length by L. The outer surface is continuously in contact with an elastic medium that acts as
an elastic foundation represented by the Winkler/Pasternak model with radial stiffness kr and shear
stiffness kg.

In cylindrical coordinates, the total linear elastic strain energy V of the cylindrical shell and foundation can
be written in an integral form as

V ¼
1

2

Z L

0

Z 2p

0

Z Ro

Ri

fĒ½nA2
1 þ ð1� 2nÞðA2 þ 0:5A3Þ�grdrdydzþ

kr

2

Z L

0

Z 2p

0

ðujr¼Ro
Þ
2Ro dy dz

þ
kg

2

Z L

0

Z 2p

0

qw

qz

� �2

þ
qw

r qy

� �2
" #�����

r¼Ro

Ro dydz, ð1Þ

where

A1 ¼ �rr þ �yy þ �zz; A2 ¼ �
2
rr þ �

2
yy þ �

2
zz; A3 ¼ �

2
ry þ �

2
rz þ �

2
yz; Ē ¼

E

ð1þ vÞð1� 2vÞ

in which E and n are the Young’s modulus and Poisson’s ratio, respectively.
Shear layer

h

R

L

z

Kg

Kr

θ

Fig. 1. Geometry of circular cylindrical shell in contact with an elastic medium.
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Based on the 3D small deformation theory of elasticity, the strain–displacement relations can be
expressed as

�rr ¼
qu

qr
; �yy ¼

u

r
þ

qv

r qy
; �zz ¼

qw

qz
,

�ry ¼
qu

r qy
þ

qv

qr
�

v

r
; �rz ¼

qu

qz
þ

qw

qr
; �yz ¼

qv

qz
þ

qw

r qy
. ð2Þ

The kinetic energy for 3D deformation is given by

T ¼
r
2

Z L

0

Z 2p

0

Z Ro

Ri

qu

qt

� �2

þ
qv

qt

� �2

þ
qw

qt

� �2
" #

rdrdydz, (3)

where r is the mass per unit volume. For closed cylindrical shells, due to isotropic properties and periodic
geometry of the shell, the displacement components in the y-direction can be represented as [23,38]

uðr; y; z; tÞ ¼ Umðr; z; tÞ cosðmyÞ; vðr; y; z; tÞ ¼ Vmðr; z; tÞ sinðmyÞ,

wðr; y; z; tÞ ¼W mðr; z; tÞ cosðmyÞ, ð4Þ

where m ( ¼ 0,1,2,y) represents the circumferential wavenumber. Um, Vm and Wm are unknown displacement
functions in the r-, y-, and z-directions, respectively. In order to build a high degree of transverse discretization
generality into the model, the layerwise laminate theory of Reddy [26] is used to introduce the following
expansions for the displacement components in the radial direction:

Umðr; z; tÞ ¼
XNr

i¼1

Uimðz; tÞciðrÞ ¼ Uimðz; tÞciðrÞ,

Vmðr; z; tÞ ¼
XNr

i¼1

Vimðz; tÞciðrÞ ¼ V imðz; tÞciðrÞ,

W mðr; z; tÞ ¼
XNr

i¼1

W imðz; tÞciðrÞ ¼W imðz; tÞciðrÞ for i ¼ 1; 2; . . . ;Nr, ð5Þ

where ciðrÞ denote the global interpolation functions in the r-direction; Also Nr½¼ ðNnpl � 1ÞNm þ 1�, represents
the total number of nodes through the thickness of the shell, in which the Nm and (Nnpl), represent the number of
mathematical layers and nodes per layer in the thickness direction, respectively.

In the present study, in each mathematical layer 1D Lagrange interpolation functions are used and hence
the global interpolation function ciðrÞ can easily be obtained.

The layerwise concept is very general in which the number of subdivisions can be greater than, equal to, or
less than the number of material layers through the thickness. Any desired degree of displacement variation
through the thickness is easily obtained by either adding more subdivisions (mathematical layers) or using
higher-order Lagrangian interpolation polynomials through the thickness.

The discretized form of the equations of motion and the related boundary conditions for free vibration
analysis of circular cylindrical shell with circumferential elastic foundation can be obtained by using
Hamilton’s principle, which is, Z t2

t1

ðdT � dV Þdt ¼ 0. (6)

After substituting the displacement components from Eqs. (4) and (5) into Eqs. (1)–(3) and performing the
integrations by parts in Hamilton’s equation (6), one obtains the governing equations:

dUim : Ē ½CðmÞoo ðð1� nÞðF ij þ CijÞ þ nðDji þDijÞÞ þ n̄S
ðmÞ
11 Cij�Ujm � n̄CðmÞoo Bij

q2Ujm

qz2

(
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þ ½C
ðmÞ
1o ðð1� nÞCij þ nDijÞ � n̄S

ðmÞ
1o ðDji � CijÞ�V jm þ CðmÞoo ðnðEij þ AijÞ � n̄EjiÞ

qW jm

qz

)

þ CðmÞoo diNrdjNr RokrUjm � CðmÞoo Gij

q2Ujm

qt2
¼ 0, ð7Þ

dV im: : Ē ½C
ðmÞ
o1 ðð1� nÞCij þ nDjiÞ � n̄S

ðmÞ
1o ðDij � CijÞ�Ujm þ ½C

ðmÞ
11 ð1� nÞCij þ n̄SðmÞoo ðFij þ Cij �Dji �DijÞ�V jm

�

� n̄SðmÞoo Bij

q2Vjm

qz2
þ ðnC

ðmÞ
o1 þ n̄S

ðmÞ
1o ÞAij

qW jm

qz

�
þ C

ðmÞ
11 diNr

djNr

kg

Ro

Vjm � SðmÞoo Gij

q2Vjm

qt2
¼ 0, ð8Þ

dW im : Ē CðmÞoo ðn̄Eij � nðEji þ AijÞÞ
qUjm

qz
� nC

ðmÞ
o1 þ n̄S

ðmÞ
o1

� 	
Aij

qVjm

qz
þ S

ðmÞ
11 Cij

� �
W jm

(

þ n̄ðCðmÞoo F ij � ð1� nÞCðmÞoo ÞBij

q2W jm

qz2

)
� CðmÞoo diNr

djNr
Rokg

q2W jm

qz2
� CðmÞoo Gij

q2W jm

qt2
¼ 0, ð9Þ

where n̄ ¼ ð1� 2nÞ=2 and dij is the Kronecker delta.
The geometrical and natural boundary conditions at the ends z ¼ 0 and L are:

Either Uim ¼ 0 (10a)

or

Fim
r ¼ Ēn̄CðmÞoo Bij

qUjm

qz
þ EjiW jm

� �
¼ 0, (10b)

Either V im ¼ 0 (11a)

or

F im
y ¼ Ēn̄ SðmÞoo Bij

qV jm

qz
� S

ðmÞ
1o AijW jm

� �
¼ 0, (11b)

Either W im ¼ 0 (12a)

or

Fim
z ¼ Ē CðmÞoo ð1� nÞBij

qW jm

qz
þ nðEji þ AijÞUjm

� �
þ nC

ðmÞ
1o AijVjm


 �
þ CðmÞoo diNrdjNr Rokg

qW jm

qz
¼ 0, (12b)

where

C
ðmÞ
ab ¼

Z 2p

0

mamb cos2 ðmyÞdy; S
ðmÞ
ab ¼

Z 2p

0

mamb sin2 ðmyÞdy

and

Aij ¼

Z Ro

Ri

cicj dr; Bij ¼

Z Ro

Ri

cicjrdr; Cij ¼

Z Ro

Ri

cicj

r
dr; Dij ¼

Z Ro

Ri

c0icj dr,

Eij ¼

Z Ro

Ri

c0icjrdr; Fij ¼

Z Ro

Ri

c0ic
0
jrdr; Gij ¼

Z Ro

Ri

rcicjrdr.

F im
r , Fim

y , Fim
z are the generalized forces along the r-, y- and z-directions. In the present work,

the global quadratic shape functions ðNnpl ¼ 3Þ are used through the thickness of the cylinder, which can be
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expressed as

ciðrÞ ¼

0; rpri�1; riþ1pr;

r2 � ðri�1 þ riþ1Þrþ ri�1riþ1

r2i � ðri�1 þ riþ1Þri þ ri�1riþ1

; ri�1prpriþ1;
i ¼ 2; 4; . . . ;Nr � 1;

8><
>: (13)

ciðrÞ ¼

0; Riprpri�2ðia1Þ; riþ2prpRoðiaNrÞ;

r2 � ðri�2 þ ri�1Þrþ ri�2ri�1

r2i � ðri�2 þ ri�1Þri þ ri�2ri�1

; ri�2prpri ðia1Þ;

r2 � ðriþ1 þ riþ2Þrþ riþ1riþ2

r2i � ðriþ1 þ riþ2Þri þ riþ1riþ2

; riprpriþ2 ðiaNrÞ;

i ¼ 1; 3; . . . ;Nr;

8>>>>>><
>>>>>>:

(14)

where ri is the radial position of the node i. Using Eqs. (13) and (14), the elements of the stiffness and mass
matrices are obtained by exact integrations in the radial direction.

The boundary conditions considered in this study are one of the following types or some combination of
them at the ends of cylinder.

For simply supported boundary conditions:

Uim ¼ V im ¼ 0; Fim
z ¼ Ē CðmÞoo ð1� nÞBij

qW jm

qz
þ nðEji þ AijÞUjm

� �
þ nC

ðmÞ
1o AijVjm


 �

þ CðmÞoo diNr
djNr

Rokg

qW jm

qz
¼ 0. ð15Þ

For clamped supported boundary conditions:

Uim ¼ Vim ¼W im ¼ 0. (16)

For free supported boundary conditions:

Fim
r ¼ Ēn̄CðmÞoo Bij

qUjm

qz
þ EjiW jm

� �
¼ 0,

Fim
y ¼ Ēn̄ SðmÞoo Bij

qV jm

qz
� S

ðmÞ
1o AijW jm

� �
¼ 0,

Fim
z ¼ Ē CðmÞoo ð1� nÞBij

qW jm

qz
þ nðEji þ AijÞUjm

� �
þ nC

ðmÞ
1o AijVjm


 �

þ CðmÞoo diNr
djNr

Rokg

qW jm

qz
¼ 0. ð17Þ

For free vibration analysis, the following solutions may be assumed for the displacement components

Uimðz; tÞ ¼ Ū imðzÞe
Iot; Vimðz; tÞ ¼ V̄ imðzÞe

Iot; W imðz; tÞ ¼ W̄ imðzÞ e
Iot, (18)

where I ¼
ffiffiffiffiffiffiffi
�1
p

, and o is the natural frequency.
3. Differential quadrature discretized form of the governing equations

At this stage, the transversely discretized governing differential equations and the related boundary
conditions are transformed into algebraic equations via the differential quadrature method. Using the
differential quadrature discretization rules for spatial derivatives [27–36] and Eq. (18), the differential
quadrature analogs of the governing differential equations are obtained as follows.
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For Eq. (7) the differential quadrature analog is

Ē ½CðmÞoo ðð1� nÞðFij þ CijÞ þ nðDji þDijÞÞ þ n̄S
ðmÞ
11 Cij �Ū jmn � n̄CðmÞoo Bij

XNz

r¼1

Bz
nrŪ jmr

(

þ ½C
ðmÞ
1o ðð1� nÞCij þ nDij � n̄S

ðmÞ
1o ðDji � CijÞÞ�V̄ jmn þ CðmÞoo ðnðEij þ AijÞ � n̄EjiÞ

XNz

r¼1

Az
nrW̄ jmr

)

þ CðmÞoo diNr
djNr

RokrŪ jmn þ CðmÞoo Gijo2Ū jmn ¼ 0. ð19Þ

For Eq. (8) the differential quadrature analog is

dV im : Ē ½C
ðmÞ
01 ðð1� nÞCij þ nDijÞ � n̄S

ðmÞ
10 ðDij � CijÞ�

(
Ujm þ ½C

ðmÞ
11 ð1� nÞCij

þ n̄SðmÞoo ðFij þ Cij �Dji �DijÞÞ�V̄ jmn � n̄SðmÞoo Bij

XNz

r¼1

Bz
nrV̄ jmr þ ðnC

ðmÞ
o1 þ n̄S

ðmÞ
1o ÞAij

XNz

r¼1

Az
nrW̄ jmr

)

þ C
ðmÞ
11 diNr

djNr

kg

Ro

V̄ jmn þ SðmÞoo Gijo2V̄ jmn ¼ 0. ð20Þ
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Fig. 2. (a)–(c) Convergence behavior of simply supported boundary condition (h/R ¼ 0.1, R/L ¼ 1, Kr ¼ 0, Kg ¼ 0): ( ) Nm ¼ 3,

( ) Nm ¼ 6, ( ) Nm ¼ 10, and ( ) Nm ¼ 13.
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For Eq. (9) the differential quadrature analog is

Ē CðmÞoo ðn̄Eij � nðEji þ AijÞÞ
XNz

r¼1

Az
nrŪ jmr � ðnC

ðmÞ
o1 þ n̄S

ðmÞ
o1 ÞAij

XNz

r¼1

Az
nrV̄ jmr þ n̄ðCðmÞoo F ij

(

þ S
ðmÞ
11 CijÞW̄ jmn � ð1� nÞCðmÞoo Bij

XNz

r¼1

Bz
nrW̄ jmr

)
� CðmÞoo diNr

djNr
Rokg

XNz

r¼1

Bz
nrW̄ jmr

þ CðmÞoo Gijo2W̄ jmn ¼ 0. ð21Þ

For brevity proposes, only differential quadrature analogs of the general boundary conditions will be
developed

Either Uimn ¼ 0 (22a)

or

Fimn
r ¼ Ēn̄CðmÞoo Bij

XNz

r¼1

Az
nrŪ jmr þ EjiW̄ jmn

 !
¼ 0, (22b)

Either V imn ¼ 0 (23a)
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Fig. 3. (a)–(c) Convergence behavior of clamped-free boundary condition (h/R ¼ 0.1, R/L ¼ 1, Kr ¼ 0, Kg ¼ 0): ( ) Nm ¼ 3,

( ) Nm ¼ 6, ( ) Nm ¼ 10, and ( ) Nm ¼ 13.
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or

Fimn
y ¼ Ēn̄ SðmÞoo Bij

XNz

r¼1

Az
nrV̄ jmr � S

ðmÞ
1o AijW̄ jmn

 !
¼ 0, (23b)

Either W imn ¼ 0 (24a)
Table 1

Comparison of (non-dimensional natural) frequency parameters (ōmn), between present method and other methods, under simply

supported boundary condition (h/R ¼ 0.1, R/L ¼ 1, Kr ¼ 0, Kg ¼ 0)

m n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5 n ¼ 6 n ¼ 7 n ¼ 8

1 0.70740 1.06232 1.69220 2.37451 2.91461 3.96341 – –

– [1.06238] – [2.37453] – [3.96340] – –

{0.70739} {1.06615} {1.71228} {2.37722} {2.92544} {3.96827} – –

– (1.06232) – (2.37453) – (3.96341) – –

2 0.88249 1.41479 1.70699 2.71590 2.97171 4.48756 – –

[0.88260] – – [2.71595] – [4.48757] – –

{0.88442} {1.41481} {1.71228} {2.71903} {2.97255} {4.49583} – –

(0.88250) – – (2.71590) – (4.48756) – –

3 0.80943 1.76270 2.12217 3.07138 3.15325 4.72229 4.95623 5.23671

[0.80963] – – – [3.15331] – – [5.23675]

{0.80747} {1.77284} {2.12214} {3.07112} {3.15690} {4.72714} {4.95266} {5.25202}

(0.80944) – – – (3.15326) – – (5.23671)

4 0.89879 1.88262 2.82953 3.21793 3.66211 4.86572 5.30824 6.12247

[0.89905] – – – [3.66217] – – [6.12255]

{0.89308} {1.88687} {2.82966} {3.24477} {3.66579} {4.83580} {5.31526} {6.12493}

(0.89880) – – – (3.66212) – – (6.12248)

Values in [ ] denotes results of Ref. [38] (Table 5).

Values in { } denotes results from ANSYS software.

Values in ( ) denotes LW-exact method.

Table 2

Comparison of (non-dimensional natural) frequency parameters (ōmn), between present method and other methods, under simply

supported boundary condition (h/R ¼ 0.3, R/L ¼ 1, Kr ¼ 0, Kg ¼ 0)

m n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5 n ¼ 6 n ¼ 7

1 0.70969 1.33732 2.37760 3.01128 3.93351 – –

– [1.33761] [2.37781] – [3.93343] – –

{0.70958} {1.35854} {2.39137} {3.037497} {3.95016} – –

– (1.33732) (2.37761) – (3.93351) – –

2 1.32336 1.41879 2.72152 3.11267 4.42453 – –

[1.32371] – [2.72196] – [4.42468] – –

{1.32477} {1.41929} {2.73855} {3.16726} {4.45947} – –

(1.32336) – (2.72153) – (4.42454) – –

3 1.52770 2.12674 3.16101 3.30062 4.96430 5.11174 –

[1.52805] – [3.16159] – – [5.11234] –

{1.50997} {2.12865} {3.16723} {3.33191} {4.96398} {5.17180} –

(1.52780) – (3.16101) – – (5.11174) –

4 1.92671 2.83294 3.58188 3.67056 5.31801 5.57520 5.90186

[1.92695] – – [3.67122] – – [5.90307]

{1.90540} {2.83773} {3.59406} {3.68163} {5.35346} {5.60585} {5.86617}

(1.92671) – – (3.67057) – – (5.90186)

Values in [ ] denotes results of Ref. [38] (Table 5).

Values in { } denotes results from ANSYS software.

Values in ( ) denotes LW-exact analysis.
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Table 3

Comparison of present frequency parameters, with ANSYS software, under different Boundary conditions (R/L ¼ 1, h/R ¼ 0.3, Kr ¼ 0,

Kg ¼ 0)

m LW–DQ ANSYS

n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 1 n ¼ 2 n ¼ 3

C– C

1 1.7860 2.6043 3.4148 1.7972 2.6222 3.4192

2 1.7452 3.2942 3.4921 1.7573 3.3114 3.5150

3 1.8867 3.6024 3.9416 1.8862 3.6320 3.9257

4 2.1966 3.8126 4.2757 2.2072 3.8228 4.3215

5 2.6385 4.1302 4.7010 2.6617 4.1327 4.7322

C– F

1 0.7514 1.7563 1.8800 0.7546 1.7692 1.8996

2 0.6620 1.8962 2.1305 0.6713 1.9256 2.1557

3 0.9246 2.0610 2.5165 0.9301 2.0668 2.5482

4 1.4021 2.4030 2.9919 1.4282 2.4646 3.0342

5 1.9814 2.8666 3.5251 2.0228 2.8571 3.5628

F– F

1 0.0000 0.0001 1.0710 0.0000 0.0001 1.0734

2 0.2576 0.3800 1.3533 0.2608 0.3831 1.3594

3 0.6884 0.9253 1.8689 0.6890 0.9377 1.8794

4 1.2302 1.5160 2.4754 1.2525 1.5307 2.4917

5 1.8427 2.1343 3.1169 1.8694 2.1532 3.1417

Table 4

Comparison of computational time of LW–DQ and ANSYS software for evaluation of the first three frequency parameters under simply

supported boundary condition (R/L ¼ 0.25, h/R ¼ 0.1, Nz ¼ 11, Kr ¼ 0, Kg ¼ 0)

LW–DQ ANSYS

Nm o21 o31 o11 Run time (s) No. of elements o1 o2 o3 Run time (s)

8 0.6871 1.1346 1.2306 3.585 200 0.6892 1.1385 1.2309 890.41

9 0.6869 1.1342 1.2306 5.277 400 0.6889 1.1363 1.2309 950.11

11 0.6872 1.1349 1.2306 8.051 600 0.6889 1.1363 1.2309 1002.17

12 0.6878 1.1361 1.2306 10.425 800 0.6889 1.1363 1.2309 1116.95
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Fig. 4. Variation of first five non-dimensional natural frequencies vs. thickness to radius ratio under simply supported boundary condition

(R/L ¼ 1, Kr ¼ 0, Kg ¼ 0): ( ) i ¼ 1, ( ) i ¼ 2, ( ) i ¼ 3, ( ) i ¼ 4, and ( ) i ¼ 5.
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or

Fimn
z ¼ Ē CðmÞoo ð1� nÞBij

XNz

r¼1

Az
nrW̄ jmr þ nðEji þ AijÞ

 !
Ū jmnÞ þ nC

ðmÞ
1o AijV̄ jmn

" #

þ CðmÞoo diNr
djNr

Rokg

XNz

r¼1

Az
nrW̄ jmr ¼ 0. ð24bÞ

To perform the eigenvalue system of equations, the degrees of freedom are separated into the domain and
the boundary degrees of freedom as

d ¼

Ūj

V̄j

W̄j

8><
>:

9>=
>;

domain

; b ¼

Ūj

V̄j

W̄j

8><
>:

9>=
>;

boundary

. (25)
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Fig. 5. Variation of first five non-dimensional natural frequencies vs. thickness to radius ratio under free boundary condition (R/L ¼ 1,

Kr ¼ 0, Kg ¼ 0): ( ) i ¼ 1, ( ) i ¼ 2, ( ) i ¼ 3, ( ) i ¼ 4, and ( ) i ¼ 5.
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Fig. 6. Variation of first five non-dimensional natural frequencies vs. thickness to radius ratio under clamped boundary condition (R/

L ¼ 1, Kr ¼ 0, Kg ¼ 0): ( ) i ¼ 1, ( ) i ¼ 2, ( ) i ¼ 3, ( ) i ¼ 4, and ( ) i ¼ 5.
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Using Eq. (25), the discretized form of the equations of motion in the matrix form can be rearranged as

Sdbbþ Sdddþ o2Md ¼ 0, (26)

where Sdb and Sdd are stiffness matrices and M is the mass matrix. In a similar manner, the discretized form of
the boundary conditions become

Sbbbþ Sbdd ¼ 0, (27)

where Sbb and Sbd are the stiffness matrices. In the above equations, the elements of stiffness and mass
matrices are obtained based on the definition of vectors of domain and boundary degrees of freedom from
the differential quadrature discretized form of the equations of motion and the boundary conditions. Using
Eq. (27) to eliminate the boundary degrees of freedom b from Eq. (26), one obtains

Sdþ o2Md ¼ 0, (28)

where

S ¼ Sdd � SdbS
�1
bb Sbd.
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Fig. 7. (a)–(c) Variation of non-dimensional natural frequencies vs. radial elastic foundation stiffness for different values of transverse

foundation stiffness under clamped boundary condition (R/L ¼ 1, h/R ¼ 0.1): ( ) Kg ¼ 0, ( ) Kg ¼ 0.01, ( )

Kg ¼ 0.05, ( ) Kg ¼ 1, and ( ) Kg ¼ 10.
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The size of Eq. (28) depend on the values of Nr and Nz. For the axisymmetric symmetric vibration,
i.e. m ¼ 0, it becomes 2NrðNz � 2Þ and for the other cases with ma0 it takes the value of 3NrðNz � 2Þ.
The above equations can be solved to find the natural frequencies as well as the mode shapes of cylindrical
shells.
4. Analytical solutions

In the case of simply supported cylindrical shells, surrounded by elastic foundations, the governing
equations (7)–(9) can be solved exactly. For this purpose, the Fourier expansion form of the displacement
components in the r-, y-, and z-directions can be written as, respectively,

Uimðz; tÞ ¼ UimnðtÞ cos
npz

L

� 	
; V imðz; tÞ ¼ V imnðtÞ cos

npz

L

� 	
; W imðz; tÞ ¼W imnðtÞ sin

npz

L

� 	
. (29)
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Fig. 8. (a)–(c) Variation of non-dimensional natural frequencies vs. radial elastic foundation stiffness for different values of transverse

foundation stiffness under clamped-free boundary condition (R/L ¼ 1, h/R ¼ 0.1): ( ) Kg ¼ 0, ( ) Kg ¼ 0.01, ( )

Kg ¼ 0.05, ( ) Kg ¼ 1, and ( ) Kg ¼ 10.
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Substituting the displacement components presented in Eq. (29) into Eqs. (7)–(9), Eq. (7) becomes

Ē CðmÞoo ðð1� nÞðFij þ CijÞ þ nðDji þDijÞÞ þ n̄S
ðmÞ
11 Cij þ n̄CðmÞoo Bij

np
L

� 	2
 �
Ujmn

�

þ ½C
ðmÞ
1o ð1� nÞCij þ nDij � n̄S

ðmÞ
1o ðDji � CijÞ�V jm þþCðmÞoo nðEij þ AijÞ � n̄Eji

np
L

� 	
W jmn

� 	�

þ CðmÞoo diNrdjNr RokrUjmn � CðmÞoo Gij

q2Ujmn

qt2
¼ 0. ð30Þ

Eq. (8) becomes

Ē C
ðmÞ
01 ðð1� nÞCij þ nDijÞ � n̄S

ðmÞ
10 ðDij � CijÞ


 ��
Ujm þ C

ðmÞ
11 ð1� nÞCij

h

þ n̄SðmÞoo ðFij þ Cij �Dji �DijÞ þ n̄SðmÞoo Bij

np
L

� 	2�
V jmn þ ðnC

ðmÞ
o1 þ n̄S

ðmÞ
1o ÞAij

np
L

� 	
W jmn

�

þ C
ðmÞ
11 diNr

djNr

kg

Ro

V jmn � SðmÞoo Gij

q2Vjmn

qt2
¼ 0 ð31Þ
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Fig. 9. (a)–(c) Variation of non-dimensional natural frequencies vs. radial elastic foundation stiffness for different values of transverse

foundation stiffness under free boundary condition (R/L ¼ 1, h/R ¼ 0.1): ( ) Kg ¼ 0, ( ) Kg ¼ 0.01, ( ) Kg ¼ 0.05,

( ) Kg ¼ 1, and ( ) Kg ¼ 10.
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and Eq. (9) becomes

Ē CðmÞoo ðnðEji þ AijÞ � n̄EijÞ
np
L

� 	�
Ujmn þ ðnC

ðmÞ
o1 þ n̄S

ðmÞ
o1 ÞAij

np
L

� 	
Vjmn

þ n̄ðCðmÞoo F ij þ S
ðmÞ
11 CijÞ þ ð1� nÞCðmÞoo Bij

np
L

� 	2
 �
W jmn

�
þ CðmÞoo diNr

djNr
Rokg

np
L

� 	2
W jmn

� CðmÞoo Gij

q2W jmn

qt2
¼ 0. ð32Þ

Assuming the displacement components to be harmonic, then the natural frequencies as well as the mode
shapes can be obtained by solving Eqs. (30) and (32). The eigenvalue analysis was performed using the
MATLAB software (version 7) in a straightforward manner without any numerical problem.

5. Numerical results

In this section, the convergence behavior of the method is investigated first and then comparisons with other
available solutions are made to verify the accuracy of the results. The obtained natural frequencies based on
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Fig. 10. (a)–(c) Variation of non-dimensional natural frequencies vs. radial elastic foundation stiffness for different values of transverse

foundation stiffness under simply supported boundary condition (R/L ¼ 1, h/R ¼ 0.1): ( ) Kg ¼ 0, ( ) Kg ¼ 0.01, ( )

Kg ¼ 0.05, ( ) Kg ¼ 1, and ( ) Kg ¼ 10.
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the mixed layerwise theory and differential quadrature method are compared with the exact solutions
of three-dimensional layerwise theory (LW-exact) and an iterative approach presented by Soldatos and
Hadjigeorgiou [38] for a simply supported boundary condition. Moreover, in the case of the general
boundary condition, the results are compared with those obtained using ANSYS software. Then, the
effects of elastic foundation parameters and boundary conditions on the natural frequencies of circular
cylindrical shells in contact with an elastic medium are investigated. In all of the solved examples, the non-

dimensional natural frequencies are defined as ōij ¼ ðoijLÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1þ nÞ=E

p
and the Poisson’s ratio is taken to be

n ¼ 0:3. Also, the non-dimensional foundation coefficients are defined as, Kr ¼ Ehkr=½R
2ð1� n2Þ� and

Kg ¼ Ehkg=ð1� n2Þ.
In ANSYS modeling, Solid 186 elements (3-D, 20-node structural solid element), often used for modeling of

irregular meshes, thick shells or solids, were used for the free vibration of the circular cylindrical thick shells.
For thin shells, shell element 63 (four-nodes) were used. In each case, the convergence study was performed
and for brevity purposes, only the converged results are presented here.

In all cases under consideration, the convergence behavior of the presented method was examined.
However, for brevity purposes, only those cases with simply supported and clamped-free boundary conditions
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Fig. 11. (a)–(c) Variation of non-dimensional natural frequencies vs. transverse elastic foundation stiffness for different values of radial

foundation stiffness under clamped boundary condition (R/L ¼ 1, h/R ¼ 0.1): ( ) Kr ¼ 0, ( ) Kr ¼ 0.01, ( )

Kr ¼ 0.05, ( ) Kr ¼ 1, and ( ) Kr ¼ 10.
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are presented in Figs. 2(a)–(c) and 3(a)–(c), respectively. It is obvious from these figures that converged results
are achieved with Nz ¼ 7 and Nm ¼ 3. It should be mentioned that, based on the numerical experiments
performed, it was found that by increasing the thickness-to-length ratio or reducing the length-to-radius ratio,
the convergence behaviors improved.

In Tables 1 and 2, comparisons are made among the results of the present method and those of
other three-dimensional-based solutions, i.e., the iterative approach of Soldatos and Hadjigeorgiou
[38], the exact solutions based on layerwise theory (LW-exact) and ANSYS software. The results
are prepared for the different circumferential wavenumbers and for moderately thick, and thick
simply supported circular cylindrical shells. In all cases excellent solution agreements are achieved.
Based on the data presented in these tables, it appears that the present method can predict all modes
of vibration.

In Table 3, comparisons are made between the non-dimensional frequency parameters obtained from the
present method and ANSYS software under various boundary conditions. According to the results, excellent
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Fig. 12. (a)–(c) Variation of non-dimensional natural frequencies vs. transverse elastic foundation stiffness for different values of radial

foundation stiffness under clamped-free boundary condition (R/L ¼ 1, h/R ¼ 0.1): ( ) Kr ¼ 0, ( ) Kr ¼ 0.01, ( )

Kr ¼ 0.05, ( ) Kr ¼ 1, and ( ) Kr ¼ 10.
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Fig. 13. (a)–(c) Variation of non-dimensional natural frequencies vs. transverse elastic foundation stiffness for different values of radial

foundation stiffness under free boundary condition (R/L ¼ 1, h/R ¼ 0.1): ( ) Kr ¼ 0, ( ) Kr ¼ 0.01, ( ) Kr ¼ 0.05,

( ) Kr ¼ 1, and ( ) Kr ¼ 10.
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solution agreements exist between the two approaches and the maximum error ð¼ 100� ðoPresent �

oANSYSÞ=oPresentÞ does not exceed 1.5 percent.
In Table 4, the convergence behavior and run time of the present method are compared with those of the

ANSYS software. It can be seen that using the differential quadrature–layerwise method, very accurate results
are achieved with few number of degrees of freedom and hence low computational efforts with respect to
ANSYS software.

The effects of variation of thickness-to-radius ratio on non-dimensional frequency parameters for different
boundary conditions are demonstrated in Figs. 4–6. It is clear that increasing the thickness-to-radius ratio
causes the frequency parameters to increase.

In Figs. 7–10 the effects of variation of radial coefficient of elastic foundation on the first three non-
dimensional frequency parameters for different values of shear coefficient of elastic foundation and different
boundary conditions are shown. In a similar manner, the influences of variation of shear coefficient of elastic
foundation are shown in Figs. 11–14 for different values of radial coefficient of elastic foundation. According
to these figures, it is clear that the behavior of the frequency parameters versus the coefficient of elastic
foundations depends on the type of boundary conditions.



ARTICLE IN PRESS

0.5

0.55

0.6

0.65

1.0E-06 1.0E-04 1.0E-02 1.0E+00 1.0E+02

�
1

0.6

0.8

1

1.2

1.0E-06 1.0E-04 1.0E-02 1.0E+00 1.0E+02

�
2

0.6

1

1.4

1.8

1.0E-06 1.0E-04 1.0E-02 1.0E+00 1.0E+02

�
3

KgKg

Kg

Fig. 14. (a)–(c) Variation of non-dimensional natural frequencies vs. transverse elastic foundation stiffness for different values of radial

foundation stiffness under simply supported boundary condition (R/L ¼ 1, h/R ¼ 0.1): ( ) Kr ¼ 0, ( ) Kr ¼ 0.01, ( )

Kr ¼ 0.05, ( ) Kr ¼ 1, and ( ) Kr ¼ 10.
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6. Conclusion

The three-dimensional free vibration analysis of thick circular cylindrical shells in contact with elastic
supports was examined using a hybrid layerwise-differential quadrature method. This hybrid method in
conjunction with Hamilton’s principle, was employed to discretize the through-thickness form of the
differential equations of motion and the generalized boundary conditions. Differential quadrature as an
efficient method was used to discretize the resulting equations of motion and boundary conditions in their
strong forms along the axial direction. The accuracy of the implementation procedure was verified by
comparing the results with those of an iterative exact solution, layerwise exact (LW-exact) solution, and also
with those of ANSYS finite elements solutions. The effects of circumferential elastic foundation on frequency
parameters were examined for various boundary conditions.
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